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The response of mass transfer to a small mass sink to hydrodynamic fluctuations in 
the concentration boundary layer has been calculated as a function of frequency. The 
dimensionless local flux was expressed as a series expansion of the dimensionless local 
diffusion layer thickness q and the dimensionless local characteristic frequency 5 in 
the low frequency range, and as the asymptotic power law @, in the high frequency 
range. The two solutions were shown to overlap fairly well for 6 < 6 6 13. The overall 
transfer function over the whole mass sink area involves a spatial distribution for 
which the low-frequency approximation applies a t  the upstream end and the high- 
frequency approximation applies downstream. The average response at frequency f 
varies as f-' 

These theoretical predictions were tested electrochemically by using a rotating 
disk. The modulated limiting diffusion current due to a fast redox reaction at  small 
circular microelectrodes embedded in the disk was measured as a function of the 
frequency of the modulation of the disk angular velocity. 

1. Introduction. 

electrochemically using the diffusion current I given by a redox reaction : 
The wall shear stress 7, or the velocity gradient a at  the wall are widely measured 

7, a = - = A p  P 

where p is the viscosity and A depends on the probe dimensions, active species 
concentration and solution temperature. Relation (1) is valid only in steady-state 
conditions. 

When a is time dependent, the current I ( t )  is defined by the convolution product : 

I ( t )  = h(t) * a(t), (2) 

where h(t)  is the impulse response of the system. 
An analysis in the time domain to deduce a(t)  from I ( t )  is easy only for quasi- 

steady-state conditions (i.e. for large structures associated with low frequencies in 
turbulent flows) or for fully developed laminar periodic flows such as, e.g. those 
occurring in blood circulation (Patel, McFeely & Jolls 1975). In this last case, the 
instantaneous wall velocity gradient a(t)  can be deduced from the instantaneous 
diffusion current I ( t ) ,  if h(t) ,  or its complex Fourier transform X(f), are known. 

In contrast, a spectrum analysis in the frequency domain is easier for investigating 
turbulence or unstable systems : This requires dealing with a linear theory, which 
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implies that the level of the velocity perturbations is locally (i.e. in the diffusion 
layer) much smaller than the mean flow velocity a t  any frequency. 

It has been shown that the power spectral density (p.s.d.) W, of the diffusion 
current fluctuations is linked to the p.s.d. of the velocity gradient fluctuations W, 
through the relationship (Deslouis, Tribollet & Viet 1983 ; Nakoryakov, Kashinsky & 
Kozmenko 1983) : 

(3) w, = I~(f)l"w,, 
where X ( f )  is the transfer function of the diffusion current response of a 
microelectrode to  a sinusoidal modulation of a steady flow. 

For turbulence investigations, the p.s.d. of the diffusion current fluctuations W, is 
experimentally measured, and the velocity gradient spectrum W, is deduced by 
applying (3), and therefore only the amplitude IX(f)l is needed. 

In the past, the use of electrochemical sensors was restricted to the quasi-steady- 
state domain for which IX(f)l is constant. Since the associated cutoff frequency is 
rather low owing to a high Schmidt number value in liquids (Sc = u/D z lo3), such 
a procedure considerably limited the usefulness of mass transfer sensors. If the 
transfer function is accurately determined at high frequencies, it is possible using (3) 
to analyse fluctuations of the wall velocity gradient over a wide frequency range. 
This will make mass transfer sensors as attractive as thermal sensors (e.g. hot wires). 

It is not our purpose to give an exhaustive account of all the theoretical works, 
either by numerical or analytical techniques, devoted to the calculation of this 
transfer function a t  any frequency. 

Most of the authors (see Bogolyugov et al. 1972; Dumaine 1981; Vorotyntsev, 
Martem'Yanov & Grafov 1984; Ambari, Deslouis & Tribollet 1986) found an 
asymptotic behaviour of IX( f )  1 a t  large frequencies as a power lawf-i for a circular 
or rectangular sensor. Fortuna & Hanratty (1971) proposed the same frequency 
dependence for the local mass transfer rate. 

Mao & Hanratty 1985, again by a numerical technique, found a variation of 
IX( f )  I proportional tof-l in the high frequency range and a limiting phase shift equal 
to -90". At the same time, Nakoryakov et al. 1986, obtained from a numerical 
integration an expression of X ( f )  in the whole frequency range, which presents a 
high-frequency asymptotic behaviour in agreement with the recent data of Mao & 
Hanratty (1985). 

In contrast to these theoretical studies, as mentioned by Talbot & Steinert (1987), 
there is a lack of detailed experimental studies of the frequency response (with 
respect to both amplitude and phase) of local electrochemical mass transfer shear 
probes under controlled conditions where the correct amplitude and phase are 
accurately known. This experimental problem is due to the difficulty of getting a 
very well defined periodic flow in a pipe or channel. So, up to now, no conclusive and 
quantitative verification of &(f) calculations (both in amplitude and phase) has 
been given. 

In this work, we aimed first at deriving an accurate analytical expression for 
X ( f ) ,  valid for rectangular or circular probes. Comparison with the previous 
expressions will help to understand some of the apparent discrepancies between the 
different works listed as references. 

Secondly, accurate experimental verification of this calculation will be given from 
the diffusion current measurement on a circular probe embedded in a rotating disk. 
The flow generated by a rotating disk is well known and presents some particular 
advantages for this problem : the Navier-Stokes equations had been solved for the 
steady flow by Karman (1921) and Cochran (1934), and for the unsteady flow by 
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Tribollet & Newman (1983), and a well-defined periodic flow can be easily obtained 
simply by modulating sinusoidally the disk speed around a mean value. Hence, 
electrochemical probes of defined geometry are now very well suited for determining 
the instantaneous velocity gradient in periodic flows or for deducing the p.s.d. of 
velocity gradients in turbulent or unsteady flows from mass transfer fluctuations 
measurements. 

2. Statement of the problem 
We consider a rectangular probe with its long side perpendicular to the direction 

of the mean flow or a circular probe, both embedded flush with a solid wall. The 
length 1 of the rectangular element in the mean flow direction or the diameter d of 
the circular one are small enough to neglect the effect of the normal velocity 
component as analysed by Mollet et al. (1974). 

If the width L of a rectangular probe is large enough, the edge effects in the 
transverse direction (coordinate z )  are negligible, and therefore the first two 
derivatives of the concentration ac/az and a2c/az2 can be neglected. For a circular 
probe the dimensions in the x- and z-directions are the same, and in principle ac/az 
and a2c/az2 cannot be a priori neglected. 

In  addition, we consider situations such that Z12/D or Zd2 /D is larger than 5000 in 
order to neglect diffusion in the direction of the mean flow (coordinate x) as shown 
by Ling (1963). Owing to  the above mentioned fact that  the dimensions in the x- and 
z-directions are the same for a circular probe, we assume that both a2c/az2 and a2c/ax2 
can be neglected. 

3. Frequency response of the transient local mass flux 
In  boundary-layer approximation, the mass balance equation governing the 

concentration distribution c of a species transported by convection and diffusion is : 

where V, = ay ,  V ,  = /3y with p= 0, since there is no mean flow in the transverse 
direction. The overbar designates a time average value. 

For simplification, we consider that  the electrochemical sensor fulfils the 
homogeneity condition, or in other words, is sufficiently small that any flow 
modulation is uniform in space over the sensor a t  any instant: then a and /3 are 
assumed independent of the space coordinates. 

For both geometries, the time-average solution of Leveque (1928) is valid : 

where c, is the species concentration in the bulk and S(x, z )  = [(D/Z(x-x1(z))]f. The 
local value of the diffusion layer thickness is 36f($) times S(x, 2). xl(z) represents the 
position of the leading edge of the probe with the conventions of figure 1. 

xl(z) = R- (R2-z2)a for a circular probe. 

xl(z) = 0 for a rectangular probe. 
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FIGURE 1. Scheme of the circular microelectrode. 

On a rectangular or a circular probe the steady-state flux is respectively 

We consider a modulated flow such that : 

V, = Zy+Re{&yexpiwt}, 

V ,  = Re{pyexpiwt}. 

Re means the real part and the symbol * represents a complex quantity. 
The instantaneous concentration distribution is thus defined as 

c = a+ Re {Eexp id}. (10) 

The hydrodynamic perturbation must be small enough for minimizing the 
quadratic terms (&(aF/lax) and p(aF/laz)) and therefore for satisfying the linearity 
conditions. These conditions can be written as l&/Z{ -4 1 and aE//az << aE//az. This 
calculation is therefore consistent with the assumption of a linear theory of the 
turbulent fluctuations. Then, the non-steady part of the mass balance equation may 
be written as 

The boundary conditions for the steady-state and non-steady-state equations are 

F , F =  0 for y = 0,x > xl, 
ac az 
a Y  ' a Y  
- - _  - 0 for y = 0,x < xl, 

E=c , ,  E = O  fory+oo. 
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The form of (1  1) suggests, as proposed by Nakoryakov et al. (1986), introducing the 
dimensionless function h using 

and the dimensionless variables 

which correspond to  q = y/6 and [ = wS2(x)/D.  
Equation (1 1) then becomes : 

3.1. Low-frequency solution (quasi steady state) 
As suggested by Pedley (1972) and Nakoryakov et al. (1986) we seek a solution in the 
form : m 

h = c (itJrnhm(q). (14) 
m-0 

The elementary functions h,(q) are real and obey the equations: 

d2hm q2dhm 
-+---%qhm = hm-, 
dq2 3 dq 

form = 1,2,  

h,(q) is readily obtained analytically 

After the boundary conditions of (11) one has E(q = 0)  = 0, then h(q = 0) = 0 and 

In fact, since only the interface flux is the observable quantity, we need only to 
hence h,(q = 0)  = 0 for any m. 

know the ah/aq l o  expression : 

By using Newman's method of integration of partial differential equations 
(Newman 1968), we calculated the functions h,(q) and deduced the derivatlves of 
first order a t  q = 0. Those values are listed in table 1 for m < 59. One question arises 
about the required number of terms to be retained in the expansion of (17) and the 
relevant convergence radius of the series. (ah,/aq) lo values in table 1 indicate that 
the series is alternate and therefore convergent if beyond a certain rank n one has 
IU,/U,+~(  > 1, i.e. here 
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ni m m m %I %I %I %I 
a7 0 a7 0 a7 0 a7 0 

0 0.179455 15 -0.318475 x 10-l2 30 0.174455 x 45 -0.535893 x 
1 -0,991 917 x 10-1 16 0.284021 x 31 -0.996095 x 46 0.234787 x lo-'' 
2 0.354269 x lo-' 17 -0.243 116 x 32 0.556741 x 47 -0.101 393 x 
3 -0.975289 x 18 0.200214 x 33 -0.304809 x 48 0.431 734 x 
4 0.222240~ 19 -0.158969~ 10-l6 34 0.163567 x 49 -0.181 310x 
5 -0.436312 x 20 0.121925 x 35 -0.860814 x 50 0.751 192 x 
6 0,757506 x 21 -0.904844 x 36 0.444539 x 51 -0.307 127 x 
7 -0.118465~ loe4 22 0.650776~ 37 -0.225384~ 52 0.123947 x lo-'' 
8 0.169 190 x 23 -0.454232 x 38 0.1 12244 x 53 -0.493868 x lo-'' 
9 -0.223024 x 24 0.308086 x 39 -0.549334 x 54 0.194334 x lo-" 

10 0.273645 x 25 -0.203295 x 40 0.264321 x 55 -0.755356 x 
11 -0.314680~ lo-' 26 0.130652~ 41 -0.125093~ 56 0.290077~ lo-" 
12 0.341 839 x 27 -0.818606 x 42 0.582529 x 57 -0.110085 x 
13 -0.350 156 x 10-lo 28 0.500506 x 43 -0.267023 x 58 0.412938 x 
14 0.341 839 x lo-" 29 -0.298879 x 44 0.120527 x 59 -0.153 134 x 

TABLE 1. Coefficients of the series expansion of equation (17) 

5 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

From Nakoryakov et al. 
(1986) 

Re Im 

0.1795 0 
0.1461 -0.0899 
0.0688 -0.1328 

-0.0049 -0.1181 
-0.0416 -0.07261 
-0.041 1 -0.0315 
-0.0248 -0.0117 
-0.0117 -0.0089 
-0.0072 -0.0114 
-0.0076 -0.0120 
-0.0083 -0.010 1 
- 0,007 8 - 0.007 8 
-0.0066 -0.0062 
-0.0055 -0.0053 

From (17) From (21) 

Re 

0.1795 
0.1462 
0.0689 

-0.0049 
-0.041 6 
-0.041 1 
- 0.024 7 
-0.0116 
-0.007 2 
-0.007 6 
-0.0084 
-0.007 8 
-0.0065 
-0.005 1 

I m  

0 
-0.0899 
-0.1329 
-0.118 2 
-0.0726 
-0.031 4 
-0.01 1 7 
-0.0090 
-0.01 1 5 
-0.012 1 
-0.0102 
-0.007 8 
- 0.006 3 
-0.0052 

mmsx 

t 
9 

12 
16 
21 
24 
28 
33 
38 
44 
51 
57 
66 
73 

Re 

- 

-0.0137 
-0.01 12 
-0.0094 
-0.0080 
- 0.006 9 
-0.006 1 
-0.0054 

Im 

- 
-0.0137 
-0.0112 
-0.0094 
-0.0080 
-0.0069 
- 0.006 1 
-0.0054 

TABLE 2. Dependence of the dimensionless local flux dh/dv l o  on the dimensionless frequency E 

The ratio between the two following terms of ranks n and n f l  in table 1 is 
approximated by 

.-?& = - 1.776 (n+ 1)g. 
ah,,,\ 

Therefore, the series is convergent for any < value provided that a sufficiently high 
number of terms is used. However, one must consider that  for mid or high < values, 
the first terms of the series are increasing up to a rank n such that n w (c/1.776):- 1, 
and beyond, they are decreasing. Each of these first terms can have very high values 
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lo-’ 3 x  lo-‘ 1 3 10 30 
5 

FIGURE 2. Dimensionless flux ah/ay(, vu9. 6 showing overlap of (17) and (21). 

though we will show further that the sum becomes very small a t  high values. This 
requires that not only a sufficient number of terms is considered but also that each 
term is expressed with a number of significant figures which increases with 6. 

As an illustration, table 2 reports a comparison between the value of the sum of 
the series given by (17) in real and imaginary parts as determined by our technique 
and that obtained by Nakoryakov et al. (1986) from a direct numerical integration. 

Also mentioned in table 2 is the number of terms needed (mmax column) in the 
series in order to get a satisfactory convergence for the 6 value considered. The terms 
of rank larger than 59 are deduced from dh,,/dq lo  by the expression (18). 

3.2.  High-frequency solution. Asymptotic behaviour 
The high-frequency solution must be obtained in another way, and to this end we 
followed the same procedure used by Deslouis & Tribollet (1985) by considering 
asymptotic solutions. 

Since the velocity modulation is rapidly damped close to the wall a t  high 
frequencies the convective terms can be disregarded in the homogeneous part of (13) 
which becomes : 

Since the frequency is large, the distance over which a concentration wave 
proceeds is small. Then exp ( -h3) can be considered as equal to one: 

4 FLM 216 
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with 

Then 

h(y )  = exp { - (i&} and K ,  = JOm dy". 

This complex function represented in terms of amplitude and phase shift yields '1 =T, 0.359 arggI , )=-135" 

a7 0 

As mentioned above, this asymptotic behaviour has already been proposed by 
Fortuna & Hanratty (1971). 

The values relative to (21) have also been reported in table 2 for 6 between 7 and 
13. It can be concluded that a satisfying overlap exists between values of equation 
(17) and equation (21) around 6 equal to 13, as shown in figure 2. 

4. Frequency response of a microelectrode 
From an experimental viewpoint, it must be emphasized that the behaviour shown 

by (17) and (21) has often been used for characterizing respectively the low-frequency 
and the high-frequency responses of a real microelectrode. However, the function 
ahlay l o  represents only a local value and if one refers now to the frequency w / 2 x  
instead of the local dimensionless frequency 6, one can expect that at  any frequency 
w/2x, the leading edge of a real microelectrode will always be under a low-frequency 
regime: indeed the local thickness of the diffusion layer equal to 3tr($)&(z), 
proportional to xi, is very small at the leading edge and 5 remains there always small 
even for high w/2x values ; in addition, though the relevant area decreases when w/2x 
increases, its contribution to the overall flux is not negligible because the amplitude 
is constant whereas over the remaining ' high-frequency ' area downstream the 
amplitude is damped as 6-i. 

Therefore, so as to predict the frequency dependence of a microelectrode, it is 
necessary to integrate the local flux expression over the whole electrode area. 

The local flux is 

(221 
j = D c m [  ti T(?---)-i. Pdxl ah 

D(s - z , ( z ) )  h h dz ay 

For a rectangular probe, the overall flux & depends 
component in the mean flow direction 

with 

For a circular probe, the overall flux is 

only on d ,  the velocity 

(23) 
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the term containing p" in (22)  makes no contribution because dx,/dz is an odd 
function in z .  

Then, 4 depends also only on di the velocity component in the mean flow direction. 
If one interchanges the order of integration in (24) ,  the analytical form of 4 

becomes 

& = c m ( a D 2 d 5 ) ~ ~ H x ( 4 ,  (25)  

with 

The dimensionless functions H ,  or H must not be confused with % (dimensions in 
Coulombs) defined in (3). 

4.1. Low-frequency solution (u or u' < 13) 

For the range of u or u' values considered, any point of the microelectrode area is 
governed by the low-frequency regime. 

In quasi-steady state, u and u' tend towards zero, so from (25)  and (23): 

We verify, from (6) and (7)) that :  

For a rectangular probe, the expression of H ( d )  is obtained from the series 
expansion (17) if u' < 13: 

For a circular probe one has: 

and 

I, = (1-x3)~xrnd~. s,' with 

The numerical values of I ,  are easy to compute. In particular I, = 0.8413. 
The analytical expressions of t'he frequency response for a rectangular or for a 

circular probe given by (27) or (28) can be obtained from the coefficients i3h,/i3yIo 
given in table 1 and mmax values given in table 2.  They are in good agreement with 
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U’ 
f+=g 

0 
0.159 
0.318 
0.477 
0.637 
0.796 
0.955 
1.114 
1.273 
1.432 
1.592 
1.751 
1.910 
2.069 
2.228 
2.387 

U’ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

From (27) 

A / A  (0) 8 

1 0 
0.9729 -15.7 
0.8973 -30.5 
0.7889 -43.7 
0.6688 -54.3 
0.5570 -61.7 
0.4670 -66.1 
0.4019 -68.4 
0.356 1 -69.7 
0.3221 -70.9 
0.2943 -72.1 
0.2705 -73.2 
0.2497 -73.9 
0.231 3 -73.3 
- - 
- - 

From (29) and (31) 
Nakoryakov et al. 

(1986) 

A / A  (0) 8 

1 0 
0.9725 -15.7 
0.8965 -30.7 
0.7891 -43.8 
0.6714 -54.2 
0.560 1 -61.6 
0.4638 -66.4 
0.3844 -69.10 
- - 

- - 
- - 
- - 
- - 

- - 
- - 
- - 

From (36) 

e 

- - 

0.5290 -62.9 
0.4528 -65.9 
0.3966 -68.1 
0.3532 -69.9 
0.3187 -71.3 
0.2905 -72.5 
0.2671 -73.5 
0.2472 -74.4 
0.2302 -75.1 
0.2154 -75.8 
0.2024 -76.3 

TABLE 3. Amplitude and phase shift of function H(u‘) on a rectangular microelectrode. A good 
overlap is found between (27) and (36) for 6 < u’ < 13 

the expression given by Nakoryakov et al. (1986) and obtained by a fitting technique 
from the numerical integration : 

for u and uf < 6 :  

-- I H z ( O f I  - (1 + 0 . 0 4 9 ~ ~  + 0.0006u4)-t, 
IHZ(0) I 

and argH = -arctan [0.276s’( 1 +0.02d2 -0.00026~’~)], (31) 

arg H ,  = - arctan [0.242u( 1 + 0 . 0 1 2 4 ~ ~  -0.00015u4)]. (32) 

The different expressions are compared in table 3 for amplitude and phase shift for 
the rectangular microelectrode. 

The result in (31) is in disagreement with the low-frequency expression given 
by Fortuna & Hanratty (1971) (e.g. the argument according to our notation is 
argH = - arctan [0.61u’]) and recalled by Talbot & Steinert (1987), but is in 
good agreement with the numerical integration given by Mao & Hanratty (1985). 

4.2. High-frequency solution 
If IT’ is larger than 13, the integration of (29) relative to the rectangular probe must 
be split into two parts since the trailing portion of the microelectrode is characterized 
by the high-frequency behaviour : 
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Dimensionless frequency, r~ or u’ 

FIGURE 3. Dimensionless transfer functions for the rectangular ( H )  or circular ( H , )  
microelectrodes v8. c or c’. 

The first integral corresponds to a low-frequency range and the second one to the 
high-frequency range where expressions (17) and (21) must be used respectively. We 

where 

1 2 1  
WM’ H(a’) = +(a;)- 

a (34) 

135) 

B(ui) has been calculated for al, < 13 and B(ul,) is constant in the frequency range 
6 < ui < 13: B(a;) = -i. This result means that (33) is valid for u’ 2 6 and therefore 
can be written as: 

3.715 3.99 Wu’) - 
H ( O )  io’ (in’);. 

As a consequence, a fair overlap between (27) and (36) is obtained for 6 < u’ < 13 
(see table 3). 

Equation (36) is identical to that given by Nakoryakov et al. (1986) and obtained 
by a fitting procedure from the H(a’) variation determined by a numerical 
integration. 

By using the same splitting, the expression of the transfer function for a circular 
probe can be written as 

In (37), the part depending on ol cannot be explicitly separated as in (34). 
However, the numerical integration shows that H,(a) is independent of a1 for 
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6 Q C T ~  < 13 and is in good agreement with the expression obtained by Nakoryakov 
et al. (1986) : 

H,(O) ia (ig):‘ 
(38) 

4.416 5.3 H,(a)=--- 

Therefore, from (38) and (36), the amplitude at high frequencies varies as u-l, and 
the limiting phase is equal to -90”. 

On figure 3, the variations of H ( d )  and H,(a) in amplitude and phase shift are 
plotted versus the dimensionless frequencies. In  the first approximation, the two 
curves are shifted by a constant factor, In  fact, considering (31) and (32) a t  low 
frequency, this factor is equal to 1.14. It tends to  1.18 a t  high frequency according 
to (38) and (36). In the low-frequency range, Fortuna & Hanratty (1971) had already 
justified this fact by showing that a circular microelectrode of diameter d yields the 
same current as a rectangular one of length 0.82d and width d and therefore the 
factor 1.14 is consistent with 0.82-1. 

5. Experimental results 
A well-defined periodic flow is very difficult to obtain in a pipe or a channel, and 

the previous attempts with those flows (e.g. Ambari et al. 1986; Fortuna & Hanratty 
1971 ; Talbot & Steinert 1987) were not completely successful. 

As mentioned by Ambari et al. (1986), the flow generated by a rotating disk, the 
angular velocity of which is sinusoidally modulated, is accurately known for both 
amplitude and phase. I n  this earlier work, only the experimental variation of the 
amplitude was reported. But the probe geometry (diameter and radial eccentricity) 
was such that the cutoff frequency of H ,  was high and therefore the main observed 
effect was due to the hydrodynamic transfer function between the disk angular 
velocity and the fluid velocity. 

In  the present work, we mounted a circular microelectrode embedded in an 
insulating rotating disk with the following characteristics, diameter d = 0.03 cm and 
distance of its centre to the rotation axis r = 1.1 cm, allowing observing for the best 
conditions the effects anticipated in the theoretical analysis. 

A fast electrochemical redox reaction provides a simple means of generating a 
controlled mass flux between the solution and the wall where the concentration of 
one ionic species can be set equal to zero. 

For example the elementary reduction step Ox + ne- + Red corresponds to a 
current I which reaches a maximum value at large negative potentials imposed on 
the microelectrode such that the concentration of the oxidized species a t  the 
electrode becomes zero. 

The electrode behaves then as a perfect mass sink and the current I is proportional 
to the mass flux J as: 

where F is the Faraday number. 
I = nFJ, 

The flux itself is related to the concentration gradient by the Fick’s law 

In the present case, we selected a fast redox system (ferri/ferrocyanide) in its 
reduction step 

Fe(CN):- + e- + Fe(CN):- 

a t  equimolar concentrations M). 
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FIQURE 4. Experimental aet-up. 

KCI was used as supporting electrolyte for minimizing the transport of ferricyanide 
ions by migration due to the electric field. The material used for the microelectrode 
was platinum. 

The experiments were carried out in a cylindrical cell with a sufficient volume 
( x  1 1) for ensuring the conditions a t  infinity required by the rotating-disk theory as 
defined by KBrmBn (1921) or Cochran (1934). 

The experimental device is described in figure 4. The rotating disk electrode is 
driven by a very low-inertia d.c. motor, the angular velocity of which is controlled 
by a servo system accurately ensuring a prescribed value a, and a small sine wave 
modulation is superimposed at  a frequency w with a frequency response analyser 
(FRA Solartron 1172) such that the instantaneous velocity is : 

Q ( t )  = a( 1 + (d;/52) cos wt) .  

Here (din) is not larger than 0.1 to fulfil the linearity conditions. 
An optical encoder is fastened by a rigid coupling to the motor and delivers a train 

of pulses which me fed to a frequency to voltage converter. At its output, a sine wave 
voltage, proportional to d cos wt, is sent to theX input of the FRA. The instantaneous 
response of the diffusion current I ( t )  is picked up on a rotating mercury contactor in 
electrical contact with the electrode. 

The fluctuating component of the current Re (fc exp i(wt + 6 ) )  is _sent to the input 
Y of the FRA. The measured transfer function is obtained as f c / Q .  

This quantity is related to the electrohydrodynamical (EHD) impedance Z,,, 
otherwise defined in electrochemical studies (see for instance Deslouis et al. 1982 ; 
Tribollet & Newman 1983). 

With the symbols of this work, one has: 

The motor characteristics enable a modulation frequency w/2n of 100 Hz for an 

The hydrodynamic transfer function Z/52 had been calculated by Ambari et al. 
average angular velocity 52, of 600 r.p.m. to, be reached. 
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Dimensionless frequency, CT 

FIGURE 5. Experimental response of a platinum circular microelectrode (d = 0.03 cm, r = 1 . 1  cm) 
on a rotating disk. Solution KCl M ,  Fe(CN);-/*- M ,  8 = 25". 0 ,  120; 0, 150; x , 180 r.p.m. 

(1986) from the integration of the unsteady Navier-Stokes equations given by 
Tribollet & Newman (1983). 

In  the high-frequency range, this function &/b is increasing as the square root of 
the frequency, a situation which is specific to the rotating disk system because the 
velocity perturbation is diffusing from the wall towards the bulk. 

As a consequence, the condition &/& < 1 valid in the low-frequency range, is not 
necessarily verified a t  high frequencies if the modulation level d is kept constant and 
thus, the quadratic term &(aE//az), neglected in (l l) ,  would play a role and induce a 
nonlinearity. 

We therefore chose the modulation level d experimentally such that the linearity 
was fulfilled at any frequency. Anyhow, in turbulence measurements, this problem 
is pointless since the situation is reversed, i.e. the velocity perturbations are 
transported from the bulk to the wall and & is then expected to decrease when the 
frequency increases. 

In figure 5 ,  we have plotted the experimental variation of ZEH,,(c) and that of 
H,(a) deduced by applying expression (39) in amplitude and phase shift 0. On the 
same figure we recall, as a dashed line, the theoretical variation of H,(a) from 
expressions (28) and (38). The agreement is excellent for the amplitude, but for the 
phase shift a small discrepancy appears in the high-frequency range: the 
experimental phase shift seems to tend faster towards the asymptotic value of -90'. 

It is known, from the work of Ling (1963), that the term describing molecular 
diffusion in the z-direction, which appears in the steady-state equation, is negligible 
provided that the dimensionless parameter &P/D > 5000; if a probe fulfils this 
condition, one must expect the same condition to apply in the low-frequency range. 
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Conversely, in the high-frequency range of flow modulation, only a small area close 
to the leading edge of the microelectrode corresponds to the low-frequency regime 
but, as previously mentioned, its influence becomes predominant and the effect of 
a2c/ax2 is maximum for small values of x and y .  However, this reason may not be 
sufficient to explain the discrepancy at high frequency if we consider that the 
argument of Ling is still valid a t  high frequency. Another reason for the discrepancy 
could be found in the influence of the convection term in the z-direction when the 
frequency increases. Indeed, for the rotating disk system at low frequency, the mean 
velocity vector and the fluctuating one are aligned and therefore no z velocity 
component (in the local reference frame) exists. At high frequency, the fluctuating 
velocity component tends to be aligned with the circumferential direction and, 
hence, a z velocity component appears. In  these conditions, we may expect an 
influence of ,8 in the response, because the argument put forward previously about 
the absence of its contribution (see (22)) concerned a perfectly circular sensor, and is 
unlikely to be accurate for a real one. 

For the major part of the hydrodynamical applications involving p.s.d. 
measurements, the knowledge of the magnitude of HJa)  is sufficient, in order to 
apply (2) and the expressions (28) and (38) can be used. For most of the pulsatile 
flows studied so far, the frequency domain is smaller than in turbulence studies, 
mainly because it is difficult to perform mechanical modulations at high frequencies. 
Therefore, the amplitude and phase shift, which are both useful in this instance, can 
be accurately predicted since the agreement between theory and experiment is 
excellent in the respective frequency domains of interest (i.e. for cr < 8).  

In  conclusion, this work contributes to the idea that electrochemical probes can be 
very useful for hydrodynamic studies involving instabilities or periodic flows. 
Although the mass transfer process causes a damping a t  lower frequencies than, for 
example, thermal probes, the transfer function is now accurately known and can be 
used to correct the damping. 

In  particular, the results of the combined analytical and numerical calculations of 
this transfer function presented here were experimentally verified by use of a 
rotating disk system for which a periodic flow can be properly determined. 

The results also point to the fact that the apparent discrepancies observed among 
the different exponent values of frequency reported in the literature in the high- 
frequency range come from the usual implicit but incorrect argument that one can 
apply the expression established for a local transfer function (i.e. h )  to a real 
microelectrode, however small. 

The authors express their thanks to Dr P. Mitschka (Institut of Chem. Process 
Func. Czech. Acad. of Sciences, Prague) for helpful suggestions. 
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